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Abstract
We study a complex Ginzburg–Landau (CGL) equation perturbed by a random
force which is white in time and smooth in the space variable x. Assuming that
dim x � 4, we prove that this equation has a unique solution and discuss
its asymptotic in time properties. Next we consider the case when the
random force is proportional to the square root of the viscosity and study
the behaviour of stationary solutions as the viscosity goes to zero. We show
that, under this limit, a subsequence of solutions in question converges to a
nontrivial stationary process formed by global strong solutions of the nonlinear
Schrödinger equation.

PACS numbers: 02.30.Jr, 02.50.Fz, 05.45.−a, 47.20.Ky
Mathematics Subject Classification: 35K55, 35Q55, 60H15, 58F11

1. Introduction

In this work, we consider the randomly forced complex Ginzburg–Landau (CGL) equation

u̇ − (ν + i)�u + iλ|u|2u = η(t, x) u = u(t, x) (1.1)

where 0 < ν � 1, λ > 0, dim x � 4, and either x ∈ D � R
n, and then the equation is

supplemented with the Dirichlet boundary condition, or x ∈ R
n, and then the odd-periodic

boundary conditions are imposed (see relation (2.7)). The force η(t, x) is a random field white
in time and sufficiently smooth in x:

η(t, x) = ∂

∂t

∞∑
j=1

bjβj (t)ej (x)

∞∑
j=1

αjb
2
j < ∞. (1.2)
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Here {ej } are the normalized (real) eigenfunctions of the Dirichlet Laplacian with eigenvalues
{αj }, and {βj (t), t � 0} are independent standard complex-valued Wiener processes.

In section 2, we show that equation (1.1) has a unique solution defined for t � 0 and
equal to a given initial function at t = 0 (see proposition 2.2). For this solution, we derive
various a priori estimates and next use them to prove that equation (1.1) has stationary in time
solutions (see proposition 2.5). We note that in [Kuk99] similar results are obtained for the
CGL equation without linear dispersion:

u̇ − ν�u + iλ|u|2u = η(t, x). (1.3)

The proof in [Kuk99] differs essentially from the argument used in this work, since it is based
on rather different a priori estimates. (The main estimates used in the study of (1.1) do not hold
for (1.3), and vice versa.) We also note that the initial-boundary-value problem for various
SPDE was studied by many authors and refer the reader to [DZ96, Kry00, MR03] for some
general results in this direction.

The last result of the section, theorem 2.6, states that, if all coefficients bj are nonzero, then
equation (1.1) (whose solutions are interpreted as Markov processes in a suitable functional
space) has a unique stationary measure µ̂, and any solution u(t, x) of (1.1) converges to µ̂ in
distribution:

D(u(t, ·)) ⇀ µ̂ as t → +∞. (1.4)

Section 3 contains our main results. There we study the CGL equation perturbed by a
random force of order

√
ν:

u̇ − (ν + i)�u + iλ|u|2u = √
νη(t, x) (1.5)

where η(t, x) is defined in (1.2). Let uν(t), t � 0, be a stationary (in time) solution of (1.5).
In theorem 2.4, we show that every sequence ν̂j → 0 contains a subsequence νj → 0 such
that the random processes uνj

(t) converge in distribution (as j → ∞) to a stationary process
v(t) = v(t, ·) with values in the Sobolev space H 2. The process v possesses the following
properties:

(i) The trajectories of v are solutions of the NLS equation

v̇ − i�v + iλ|v|2v = 0. (1.6)

(ii) The trajectories v(t, ·) have two integrals of motion:

1

2

∫
D

|v(t, x)|2 dx ≡ E0

∫
D

(
1

2
|∇v(t, x)|2 +

λ

4
|v(t, x)|4

)
dx ≡ E1

where E0 and E1 are random constants.
(iii) The mean values of the L2,H 1 and H 2 norms of v satisfy the relations

α1B
2
0

α1B1 + 2λMB0
� E‖v(0)‖2 � B0

α1

E‖∇v(0)‖2 = B0

E

{
‖�v(0)‖2 +

α1λ

4
‖v(0)‖4

L4

}
� α1B1 + 2λMB0

α1
.

Here ‖·‖ is the L2 norm, M > 0 is a constant depending only on D and bj , and we set

B0 =
∞∑

j=1

b2
j B1 =

∞∑
j=1

αjb
2
j . (1.7)
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The process v is the inviscid limit for the solutions uνj
. Due to the above results,

this limit is a nontrivial stationary process whose trajectories are H 2 solutions of the NLS
equation (1.6).

If either n � 3, and the equations are supplemented with the odd-periodic boundary
conditions, or n � 2, and the Dirichlet boundary condition is imposed, then the NLS
equation (1.6) defines a group of continuous transformations of the Sobolev space H 2 (see
[Bou99, BGT03] and [BG80, SS99], respectively). The measure µ = D(v(0)) is invariant for
this group of transformations. For n � 2, the NLS equation under the odd-periodic boundary
condition has invariant Gibbs measures (see [Bou99]). Presumably, the measure µ is different
from them.

Let us now assume that bj �= 0 for all j � 1, and let uν(t), t � 0, be a solution of (1.5)
with the initial condition uν(0) = u0, where u0(x) belongs to the Sobolev space H 1. Then
due to (1.4) and the above results, we have

lim
j→∞

lim
T →∞

D
(
uνj

(T )
) = µ.

In theorem 3.7, we show that the following stronger statement is true:

lim
j→∞

lim
T →+∞

D
(
uνj

(T + ·)) = D(v(·))

where the convergence holds in the space of probability measures on C(R+, L
2). Thus, the

measures µ and D(v(·)) corresponding to various sequences νj → 0 as above describe the
distributions of solutions for equation (1.5) when t 	 1 and ν 
 1.

The CGL equation (1.5) is an example of a damped/driven Hamiltonian PDE (now the
Hamiltonian PDE is the NLS equation (1.6)). The approach to study its small-viscosity
solutions exploited in this work applies to any equation of this kind, provided that the
underlying Hamiltonian PDE has two (or more) ‘good’ integrals of motion. In [Kuk03],
this approach is used to study small-viscosity solutions of the 2D Navier–Stokes system,
interpreted as a damped/driven Euler equation.

Notation. For a random variable ξ , we denote by D(ξ) its distribution. All metric spaces
are endowed with the Borel σ -algebras, and the measures on these spaces are assumed to be
probability Borel measures. We deal with complex random fields u(t, x) and often interpret
them as random processes u(t) = u(t, ·) in suitable functional spaces.

2. A priori estimates and stationary solutions for the CGL equation

2.1. Local well-posedness

Let us consider a randomly forced complex Ginzburg–Landau equation in a bounded domain
D ⊂ R

n, n � 4, with a smooth boundary ∂D:

u̇ − (ν + i)�u + iλ|u|2u = η(t, x) (2.1)

u|∂D = 0. (2.2)

Here ν ∈ (0, 1] and λ > 0 are constants and η(t, x) is a random process of the form

η(t, x) = ∂

∂t
ζ(t, x) ζ(t, x) =

∞∑
j=1

bjβj (t)ej (x) (2.3)

where ej (x), j � 1, are the normalized eigenfunctions of the Laplace operator −� in D
with the Dirichlet boundary condition that correspond to eigenvalues α1 < α2 � α3 � · · ·,
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{βj (t) = β1j (t) + iβ2j (t), t ∈ R+} is a sequence of independent complex-valued standard
Brownian motions defined on a probability space (�,F, P), and bj � 0 are some constants
satisfying the condition

B1 =
∞∑

j=1

αjb
2
j < ∞. (2.4)

We denote by (H, ‖·‖) the L2-space of complex-valued functions on D. In what follows, we
view it as a real Hilbert space with the scalar product

(u, v) = Re
∫

D

u(x)v̄(x) dx.

Clearly, we have

(u, iu) = 0 for any u ∈ H. (2.5)

Setting e−j = iej for j � 1, we see that the functions ej , j ∈ Z0 = Z\{0}, form an
orthonormal basis in H.

For any s ∈ R, let Hs be the domain of the operator (−�D)s/2, where �D is the Laplace
operator acting on complex-valued functions in D supplemented with the Dirichlet boundary
condition. In particular, H 1 is the space of functions that belong to the Sobolev space
H 1(D, C) and satisfy the boundary condition (2.2), and H 2 is the intersection of H 2(D, C)

and H 1. We provide H 1 and H 2 with the norms

‖u‖1 =
(∫

D

|∇u(x)|2 dx

) 1
2

‖u‖2 =
(∫

D

|�u(x)|2 dx

) 1
2

.

Since n � 4, the space H 1 is continuously embedded in L4 = L4(D, C).
Often the Dirichlet problem (2.1), (2.2) will be supplemented with the initial condition

u(0, x) = u0(x) (2.6)

where u0 is an H 1-valued random variable independent of ζ .
We shall also study equation (2.1) under the odd-periodic boundary conditions:

x ∈ R
n u(x1, . . . , xj , . . . , xn) = u(. . . , xj + 2π, . . .) = −u(. . . ,−xj , . . .) (2.7)

where j = 1, . . . , n. Relations (2.7) imply the Dirichlet boundary conditions for the cube of
half-periods, so the properties of the problem (2.1), (2.7) are similar to those of (2.1), (2.2)
(in fact, in many respects the former is easier than the latter). Accordingly, below we prove
our results for the problem (2.1), (2.2) and only briefly discuss their (obvious) reformulations
for (2.1), (2.7).

The initial-value problem (2.1), (2.2), (2.6) is well posed. To formulate the corresponding
result, we shall need some notation.

For any Banach space X and any T > 0, we denote by C(0, T ;X) the space of continuous
functions f : [0, T ] → X endowed with the norm

‖f ‖C(0,T ;X) = sup
t∈[0,T ]

‖f (t)‖X.

For 1 � p < ∞, Lp(0, T ;X) denotes the space of Bochner-measurable functions f (t) such
that

‖f ‖Lp(0,T ;X) :=
(∫ T

0
‖f (t)‖p

X dt

) 1
p

< ∞.

Proposition 2.1. For any random initial function u0 independent of ζ there is an a.s. positive
random constant T and a random process u(t) = u(t, x), 0 � t � T , adapted to the filtration
generated by u0 and ζ such that the following assertions hold:
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(i) Almost every realization of u(t, x) belongs to the space

S(T ) := L2(0, T ;H 2) ∩ C(0, T ;H 1).

(ii) The random process u(t, x) satisfies equation (2.1) and the initial condition (2.6) in the
sense that, with probability 1, we have

u(t) = u0 +
∫ t

0
((ν + i)�u − iλ|u|2u) ds + ζ(t) 0 � t � T (2.8)

where the left- and right-hand sides are regarded as elements of H.
(iii) If u′(t, x), 0 � t � T ′, is another random process satisfying (i) and (ii), then, with

probability 1, we have u(t) = u′(t) for 0 � t � T ∧ T ′.

Scheme of the proof. The uniqueness (in the sense of (iii)) can be easily established with the
help of (2.8) and the Gronwall inequality. To prove the existence, we set

z(t, x) =
∫ t

0
e(ν+i)(t−s)�D dζ(t, x)

and seek a solution of the form

u(t, x) = z(t, x) + v(t, x).

Substituting this formula into (2.1), (2.2), (2.6), we obtain for v the following problem:

v̇ − (ν + i)�v + iλ|z + v|2(z + v) = 0

v|∂D = 0 v(0, x) = u0(x).

Its local in time solution can be constructed as a fixed point of the operator F ,

F(w)(t) = e(ν+i)t�Du0 − iλ
∫ t

0
e(ν+i)(t−s)�D (|z + w|2(z + w)) ds

restricted to an appropriate subset of S(T ) with a sufficiently small T > 0. �

In what follows, we shall need maximal solutions of the problem (2.1), (2.2). More
precisely, for any ω ∈ �, we can extend the solution u(t, x) constructed in proposition 2.1 to
a random time interval [0, T (u0)) with the following property:

if T (u0) < +∞ then ‖u(t)‖1 → +∞ as t → T (u0)
−. (2.9)

We claim that T (u0) is a Markov time with respect to the filtration of σ -algebras generated
by the initial condition u0 and the process ζ . Indeed, let us fix an arbitrary integer R � 1 and
consider the truncated equation

u̇ − (ν + i)�u + iλχR(‖u‖1)|u|2u = η(t, x) (2.10)

where χR ∈ C∞
0 (R) is a function such that 0 � χR � 1 and χR(r) = 1 for |r| � R. Repeating

the scheme used in the proof of proposition 2.1, it is not difficult to establish the following
assertion: for any N > 0 and a.e ω ∈ �, there is a non-increasing function θ(r) > 0,
r � 0, such that, for any t0 ∈ [0, N ] and u0 ∈ H 1, the problem (2.10), (2.2) has a unique
solution u(t, x) defined on the interval [t0, t0 + θ(‖u0‖1)] and satisfying the initial condition
u(t0) = u0. Therefore, if the H 1-norm of a solution of (2.10), (2.2) remains bounded on
any compact interval, then it can be extended to the half-line t � 0. Using the fact that the
nonlinear term in (2.10) vanishes for functions with large H 1-norm, we conclude that, for any
H 1-valued random variable u0, the solution of the problem (2.10), (2.2), (2.6) is defined for
all t � 0. Let us denote this solution by uR(t, x) and introduce the Markov time

TR(u0) = min{t � 0 : ‖uR(t)‖1 � R}
(here and below, the minimum of an empty set is +∞). It is a matter of direct verification to
show that T (u0) = supR TR(u0). Hence, we conclude that T (u0) also is a Markov time.
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2.2. A priori estimates and global existence

Our next goal is to show that any maximal solution of the problem (2.1), (2.2) is defined for
all t � 0. This assertion will be proved under the additional assumption that the mean value
of the energy is finite at the initial instant. Namely, let us define the following continuous
functionals on H 1:

H0(u) := 1

2
‖u‖2 = 1

2

∫
D

|u(x)|2 dx

H1(u) :=
∫

D

(
1

2
|∇u(x)|2 +

λ

4
|u(x)|4

)
dx.

The functionalH1 is the Hamiltonian (i.e. ‘the energy’) of the NLS equation (1.6), see [Kuk00],
and H0 is called its ‘total number of particles’. Both functionals are integrals of motion for
equation (1.6).

Proposition 2.2. Let u0 be an H 1-valued random variable independent of ζ(t), t � 0, such
that EH1(u0) < ∞. Suppose that

M := sup
x∈D

∞∑
j=1

b2
j e

2
j (x) < ∞. (2.11)

Then the following assertions hold for the maximal solution u(t) of the problem (2.1), (2.2),
(2.6):

(i) For almost every ω we have T (u0) = +∞.
(ii) The random processes H0(u(t)) and H1(u(t)) possess stochastic differentials, which have

the form

dH0(u(t)) = (−ν‖∇u(t)‖2 + B0) dt + (u(t), dζ(t)) (2.12)

dH1(u(t)) =

−ν[‖�u‖2 + 2λ(|u|2, |∇u|2) + λ(u2, (∇u)2)] + B1

+ 2λ

∞∑
j=1

b2
j

(|u|2, e2
j

) dt + (−�u + λ|u|2u, dζ ) (2.13)

where the constants B0 and B1 are defined in (1.7).
(iii) For any t � 0, we have

EH0(u(t)) + ν

∫ t

0
E‖u(s)‖2

1 ds = EH0(u0) + B0t (2.14)

EH1(u(t)) +
∫ t

0
E{ν‖�u‖2 + νλ(|u|2, |∇u|2) − 2λM‖u‖2} ds

� EH1(u0) + B1t

� EH1(u(t)) + ν

∫ t

0
E{‖�u‖2 + 3λ(|u|2, |∇u|2)} ds. (2.15)

The proof of this proposition is based on the assertion below, which is a variant of Itô’s
lemma for randomly forced PDEs (cf [Par79, KR77, MR01, Shi02]). For any R > 0, let us
introduce the Markov time

τR := min{t : 0 � t < T (u0), ‖u(t)‖1 � R}.
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Using (2.9) we see that, if T (u0) < ∞, then the minimum is taken over a non-empty set.
Hence,

τR � T (u0) for all R > 0. (2.16)

Lemma 2.3. Let H : H 1 → C be a twice continuously R-differentiable functional such
that H,H′ and H′′ are uniformly continuous on bounded subsets of H 1, and H′ satisfies the
inequality

|H′(u; v)| � K(‖u‖1)‖u‖2‖v‖ u ∈ H 2 v ∈ L2 (2.17)

where K(r) � 0 is a continuous function defined for r � 0. Let u(t) be a maximal solution of
the problem (2.1), (2.2). Then, for any R > 0, the process H(u(t ∧ τR)) possesses a stochastic
differential, which has the form

dH(u(t ∧ τR)) = I{τR>t}


H′(u; (ν + i)�u − iλ|u|2u) +

1

2

∑
j∈Z0

b2
jH′′(u; ej )


 dt

+ I{τR>t}
∞∑

j=1

bjH′(u; ej ) dβj (t) (2.18)

where Z0 = Z\{0},H′(u; ·) denotes the continuous extension of the derivative of H to the
space L2, and I� = I�(ω) is the indicator function of a set �.

A proof of lemma 2.3 can be obtained by standard arguments, based on applying
Itô’s lemma (see [DZ92, theorem 4.17]) to the process H(uε(t ∧ τR)), where uε(t) =
(1 − ε�D)−1u(t), ε > 0, and passing to the limit as ε → 0. (Note that the process uε(t)

possesses a stochastic differential in the space H 1.) We shall not give the details.

Proof of proposition 2.2. The main idea of the proof is rather standard. Namely, we apply
Itô’s formula (2.18) to the processes H0(u(t ∧ τR)) and H1(u(t ∧ τR)), integrate with respect
to t, and take the expectation. This results in some a priori estimates for EH0(u(t ∧ τR)) and
EH1(u(t ∧ τR)) that are uniform in R. We next note that, if τR(ω) � t0 for all R > 0 and
ω ∈ �, where t0 > 0 is a constant and � ∈ F , then ‖u(t0 ∧ τR)‖1 � R for ω ∈ �. Hence,

EH1(u(t0 ∧ τR)) � E{I�H1(u(t0 ∧ τR))} � 1
2 P(�)R2.

Since EH1(u(t0 ∧ τR)) is bounded uniformly with respect to R > 0, we conclude that
P(�) = 0. Thus, for a.e. ω we have

τR → +∞ as R → +∞.

Now (2.16) implies assertion (i).
We shall confine ourselves to a formal derivation of relations (2.12)–(2.15). It is a matter of

direct verification to show that the functionals H0(u) and H1(u) are infinitely R-differentiable
on H 1, and their first two derivatives have the form

H′
0(u; v) = (u, v)

H′′
0(u; v) = ‖v‖2

H′
1(u; v) = (−�u + λ|u|2u, v)

H′′
1(u; v) = ‖∇v‖2 + 2λ(|u|2, |v|2) + λ(u2, v2).

(2.19)
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Applying Itô’s formula to H0(u), we derive

dH0(u(t)) = H′
0(u; du) +

1

2

∑
j∈Z0

b2
jH′′

0(u; ej ) dt

= (u, (ν + i)�u − iλ|u|2u) dt + (u, dζ ) + B0 dt

whence follows (2.12).
In a similar way, application of Itô’s formula to the functional H1(u) results in the relation

dH1(u(t)) = H′
1(u; du) +

1

2

∑
j∈Z0

b2
jH′′

1(u; ej ) dt

= (−�u + λ|u|2u, (ν + i)�u − iλ|u|2u) dt + (−�u + λ|u|2u, dζ )

+ B1 dt + 2λ
∑
j∈Z0

b2
j

(|u|2, e2
j

)
dt (2.20)

where we used that

H′′
1(u; ej ) + H′′

1(u; e−j ) = 4λ
(|u|2, e2

j

)
j � 1.

Due to (2.5), the first term on the right-hand side of (2.20) equals

(−�u + λ|u|2u, ν�u) dt = −ν(‖�u‖2 + 2λ(|u|2, |∇u|2) + λ(u2, (∇u)2)) dt.

It follows that (2.20) implies (2.13).
We now establish inequalities (2.14) and (2.15). Integrating relation (2.12) with respect

to t and taking the expectation, we obtain (2.14). To prove (2.15), we note that

|(u2, (∇u)2)| � (|u|2, |∇u|2) 0 �
∞∑

j=1

b2
j

(|u|2, e2
j

)
� M‖u‖2.

Integrating relation (2.13) with respect to t, taking the expectation and using the above
inequalities, we derive (2.15). �

In what follows, we shall also need an estimate for a higher moment of the H 1-norm of
solutions for (2.1), (2.2). Let us set

P :=
∞∑

j=1

b2
j‖ej‖2

L4 . (2.21)

In view of the Sobolev embedding theorem (e.g., see theorem 2.1 in [VF88 chapter I]), if
n � 4, then

‖ej‖2
L4 � C‖ej‖2

1 = Cαj

where C > 0 is a constant not depending on j . Hence, if condition (2.4) is satisfied, then
P < ∞.

Proposition 2.4. Suppose that the conditions of proposition 2.2 are satisfied. Let u(t, x)

be a solution of the problem (2.1), (2.2), (2.6) with an initial condition u0(x) such that
EH2

1(u0) < ∞. Then there are positive constants c and C, depending only on the domain D,
such that, for t � 0, we have

EH2
1(u(t)) � e−cνt

EH2
1(u0) + Cν−2B2

1 + Cν−4λ2(M4 + P 4). (2.22)
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Proof. We shall give a formal derivation of (2.22). Applying Itô’s formula to the process
H2

1(u(t)), we derive4

dH2
1(u(t)) = 2H1(u(t)) dH1(u(t)) +

∑
j∈Z0

b2
j (H′

1(u(t); ej ))
2 dt.

Integrating this relation with respect to t, using formula (2.13), taking the expectation and
repeating the arguments in the proof of proposition 2.2, we can show that

EH2
1(u(t)) + E

∫ t

0
Fν(u(s)) ds � EH2

1(u0) (2.23)

where we set

Fν(u) = 2νH1(u)(‖�u‖2 + λ(|u|2, |∇u|2))
− 2H1(u)(B1 + 2λM‖u‖2) −

∑
j∈Z0

b2
j (H′

1(u; ej ))
2. (2.24)

It follows from (2.19) that∑
j∈Z0

b2
j |H′

1(u; ej )|2 � 2
∑
j∈Z0

b2
j

(
α2

j u
2
j + λ2(|u|2u, ej )

2)

� 2B1‖u‖2
1 + 2λ2P ‖u‖6

L4

where we set α−j = αj for j � 1. Furthermore, we have

‖u‖2
1 � 2H1(u) ‖u‖6

L4 � 8λ− 3
2 H1(u)

3
2

‖u‖2 � (vol(D))
1
2 ‖u‖2

L4 � 2λ− 1
2 (vol(D))

1
2 H1(u)

1
2

where vol(D) is the volume of D. Hence, for any ε > 0 we can find a constant Cε > 0 not
depending on ν such that

2H1(u)(B1 + 2λM‖u‖2) � 2B1H1(u) + 8λ
1
2 M(vol(D))

1
2 H1(u)

3
2

� ενH2
1(u) + Cε

(
ν−1B2

1 + ν−3λ2M4)
2B1‖u‖2

1 � 4B1H1(u) � ενH2
1(u) + Cεν

−1B2
1

2λ2P ‖u‖6
L4 � 16λ

1
2 PH1(u)

3
2 � ενH2

1(u) + Cεν
−3λ2P 4.

Now note that5

‖u‖4
L4(D) � 4α−1

1 (|u|2, |∇u|2) (2.25)

Hence, there is c > 0 such that

‖�u‖2 + λ(|u|2, |∇u|2) � cH1(u).

Substituting the above inequalities into (2.24) and choosing ε = c/3, we derive

Fν(u) � cνH2
1(u) − C0ν

−1B2
1 − C0ν

−3λ2(M4 + P 4)

where C0 > 0 is a constant depending only on the domain D. Combining this with (2.23), we
obtain

EH2
1(u(t)) + cν

∫ t

0
EH2

1(u(s)) ds � EH2
1(u0) + C0ν

−1tB2
1 + C0ν

−3λ2t (M4 + P 4).

The required estimate (2.22) with C = C0/c follows now from the Gronwall inequality. �
4 Note that the functional H2

1(u) satisfies the conditions of lemma 2.3, and therefore application of Itô’s formula is
justified.
5 This inequality follows by applying the Poincaré inequality to the function |u|2.
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Next we shall derive some corollaries on stationary solutions of problem (2.1), (2.2). We
first note that such a solution exists as soon as conditions (2.4) and (2.11) are satisfied. Indeed,
let us denote by u(t) the solution of (2.1), (2.2), (2.6) with u0 ≡ 0. The a priori estimates
(2.14) and (2.15), combined with the Gronwall inequality, imply that

ν sup
t�0

∫ t+1

t

E‖�u(s)‖2 ds � const. (2.26)

Following the classical Bogolyubov–Krylov argument, we set

µ̄t = 1

t

∫ t

0
µs ds

where µs is the distribution of u(s). It follows from inequality (2.26) that∫
H

‖v‖2
2µ̄t (dv) � t−1

∫ t

0
E‖�u(s)‖2 ds � const ν−1.

Combining this with the Chebyshev inequality, we conclude that the family of measures
{µ̄t , t � 0} is tight in H 1. The existence of a stationary measure can now be obtained by a
standard argument (see [DZ96 section 3.1] or [CK97]).

The following result, which is a consequence of (2.14), (2.15) and (2.22), concerns all
stationary measures in H 1.

Proposition 2.5. Suppose that conditions (2.4) and (2.11) are satisfied, and let u(t, x) be an
H 1-valued stationary solution of the problem (2.1), (2.2). Then

E‖∇u‖2 = B0

ν
(2.27)

E{‖�u‖2 + λ(|u|2, |∇u|2)} � B1

ν
+

2λMB0

ν2α1
(2.28)

EH2
1(u) � CB2

1

ν2
+

Cλ2(M4 + P 4)

ν4
. (2.29)

Proof. Inequality (2.22) implies that, for any H 1-valued stationary solution of the problem
(2.1), (2.2), we have

EH2
1(u(t)) < ∞ for all t � 0. (2.30)

Indeed, let µ be a stationary measure, u(t) be a stationary solution with distribution µ, and
let χR(s) � 0 be a smooth function equal to 1 for s � R and 0 for s � R + 1. Then, for any
t � 0, we have∫

H 1
H2

1(v)χR(‖v‖1)µ(dv) =
∫

H 1
E

{
H2

1(u(t, v))χR(‖u(t, v)‖1)
}
µ(dv)

where u(t, v) denotes the solution of (2.1), (2.2), starting from v ∈ H 1. Using (2.22), we can
pass to the limit on the right-hand side of this relation as t → +∞. This results in

EH2
1(u(t))χR(‖u(t)‖1) =

∫
H 1

H2
1(v)χR(‖v‖1)µ(dv) � const.

Application of Fatou’s lemma gives (2.30). An accurate proof of (2.30) can be obtained by
repeating the arguments used in the proof of theorem 2.2 in [Shi02].

Now propositions 2.2 and 2.4 imply that relation (2.14) and inequalities (2.15) and
(2.22) hold for any H 1-valued stationary solution u(t). Relation (2.27) follows immediately
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from (2.14) and the fact that the expectation EH0(u(t)) does not depend on t. Similarly, to
prove (2.28), it suffices to note that ‖u‖2 � α−1

1 ‖u‖2
1 and to use inequality (2.15). Finally,

passing to the limit in (2.22) as t → +∞, we obtain (2.29). �

We conclude this subsection by formulating (without proof) a result on the uniqueness of
a stationary measure for the problem (2.1), (2.2). Its proof is carried out by the methods used
in [KS00, KS01, KS02] and will be given in [Shi03]6.

Theorem 2.6. Suppose that conditions (2.4) and (2.11) are satisfied and that

bj �= 0 for all j � 1. (2.31)

Then for any ν > 0 the problem (2.1), (2.2) has a unique stationary measure µν . Moreover,
for any ν > 0, any bounded continuous functional f : H 1 → R and any random variable u0

satisfying the condition EH1(u0) < ∞ we have

E f (u(t; u0)) → (f, µν) as t → ∞ (2.32)

where u(t; u0) is the solution of (2.1), (2.2), (2.6) and (f, µν) is the mean value of f with
respect to µν .

All the results of this section remain valid for the odd-periodic boundary conditions (2.7).

In this case, the trigonometric functions
(

2
π

) n
2 sin(k1x1) · · · sin(knxn) form an eigenbasis in

L2(K), where K = (0, π)n is the cube of half-periods, and condition (2.11) is implied by
(2.4).

3. The inviscid limit

3.1. Tightness of stationary measures

We now consider equation (2.1) with the right-hand side replaced by ην = √
νη:

u̇ − (ν + i)�u + iλ|u|2u = √
νη(t, x). (3.1)

Let uν(t, x), 0 < ν � 1, be stationary solutions for the problem (3.1), (2.2) that are defined
for t � 0. We denote by µν (respectively, µν) their distribution in the space H (respectively,
L2((0, 1) × D; C)).

For a Banach space X and 1 � p < ∞, let W 1,p(0, T ;X) be the space of absolutely
continuous functions f : [0, T ] → X such that

‖f ‖p

W 1,p(0,T ;X)
:= ‖f ‖p

Lp(0,T ;X) + ‖f ′‖p

Lp(0,T ;X) < ∞.

For any α ∈ (0, 1), let us define Wα,p(0, T ;X) as the space of functions f ∈ Lp(0, T ;X)

such that

‖f ‖p

Wα,p(0,T ;X) = ‖f ‖p

Lp(0,T ;X) +
∫ T

0

∫ T

0

‖f (t) − f (s)‖p

X

|t − s|1+αp
ds dt < ∞.

Finally, for γ ∈ (0, 1), let us denote by Cγ (0, 1;X) the space of functions f : [0, 1] → X

that are Hölder continuous with the exponent γ .

6 The papers [KS00, KS01] deal with a large class of PDEs (including the CGL equation) perturbed by a random
kick force, while [KS02] concerns the 2D Navier–Stokes system perturbed by a white noise in time. We note that
similar problems for the 2D Navier–Stokes equations and some other parabolic equations are studied in [EMS01,
BKL02, Mat02, Hai02]. These papers are devoted to the case of finite-dimensional forces, and therefore their results
do not apply to the setting of theorem 2.6 (see condition (2.31)).
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We fix arbitrary α ∈ (1/4, 1/2) and ε > 0, and introduce the following spaces endowed
with the natural norms:

X = L2(0, 1;H 2) ∩ (
W 1, 4

3
(
0, 1;L

4
3
)

+ Wα,4(0, 1;H 1)
) = X1 + X2

Y = L2(0, 1;H 2−ε) ∩ C
(
0, 1;H− n

4 −ε
)

where

X1 = L2(0, 1;H 2) ∩ W 1, 4
3
(
0, 1;L

4
3
)

X2 = L2(0, 1;H 2) ∩ Wα,4(0, 1;H 1).

Let us note that we have a compact embedding X ⊂ Y . Indeed, it follows from theorems 5.1
and 5.2 in [Lio69, chapter 1] that the spaces X1 and X2 are compactly embedded in
L2(0, 1;H 2−ε). Furthermore, we have continuous embeddings7

X1 ⊂ C
1
4
(
0, 1;L

4
3
)

X2 ⊂ Cα− 1
4 (0, 1;H 1). (3.2)

It remains to note that H 1 ⊂ L
4
3 ⊂ H− n

4 , and therefore the spaces in (3.2) are compactly
embedded in C

(
0, 1;H− n

4 −ε
)
.

Theorem 3.1. Suppose that conditions (2.4) and (2.11) are satisfied. Then the following
assertions hold:

(i) The family {µν} is tight in H 2−ε.
(ii) There is a constant C > 0 not depending on ν such that

E‖uν‖X � C for 0 < ν � 1. (3.3)

(iii) The family {µν} is tight in the space Y .

Proof. It suffices to establish (3.3), because assertions (i) and (iii) are straightforward
consequences of the Prokhorov theorem, inequalities (2.28) and (3.3) and the compact
embeddings H 2 ⊂ H 2−ε and X ⊂ Y .

In what follows, we denote by Ci inessential positive constants that do not depend on ν.
To prove (3.3), we first note that, by (2.28),

E‖uν‖2
L2(0,1;H 2) � C1. (3.4)

Using (2.8), we represent uν in the form

uν(t) = vν(t) − wν(t) + ζν(t) (3.5)

where ζν(t) = √
νζ(t) and

vν(t) = uν(0) + (ν + i)

∫ t

0
�uν(s) ds

wν(t) = iλ
∫ t

0
|uν(s)|2uν(s) ds.

Applying (2.28) again and taking into account inequality (2.25), we obtain

E‖vν‖2
W 1,2(0,1;L2) � C3 (3.6)

E‖wν‖4/3
W 1,4/3(0,1;L4/3)

� C4λ
4/3. (3.7)

7 The first embedding in (3.2) is obvious, and the other is a well-known Sobolev-type embedding theorem; see
[VF88, theorem I.2.1] or [Kry95, lemma II.2.4].
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Furthermore, the well-known properties of the Brownian motion imply that

E

∫ 1

0
‖ζ‖4

1 dt = E

∫ 1

0


 ∞∑

j=1

αjb
2
j |βj (t)|2




2

dt

� B1

∞∑
j=1

αjb
2
j

∫ 1

0
E|βj (t)|4 dt � C5B

2
1 (3.8)

E

∫ 1

0

∫ 1

0

‖ζ(t) − ζ(s)‖4
1

|t − s|1+4α
ds dt � B1

∞∑
j=1

αjb
2
j

∫ 1

0

∫ 1

0

E|βj (t) − βj (s)|4
|t − s|1+4α

ds dt

� C6B
2
1 . (3.9)

Combining (3.4)–(3.9) and using the embedding W 1,2(0, 1;L2) ⊂ W 1, 4
3
(
0, 1;L

4
3
)
, we

obtain (3.3). �

As we explained at the end of section 2.2, in the case of the odd-periodic boundary
condition relation (2.4) implies (2.11). So for the problem (2.1), (2.7) the assertions of
theorem 3.1 hold under assumption (2.4).

3.2. Limiting process and stationary solutions for the NLS equation

Let us fix an arbitrary sequence ν̂j → 0. The following result is a consequence of assertion
(iii) of theorem 3.1, the weak compactness of bounded closed subsets of a reflexive Banach
space and the Skorokhod embedding theorem (cf [Kuk03]).

Theorem 3.2. Suppose that conditions (2.4) and (2.11) are satisfied. Then there is a
subsequence {νj } ⊂ {ν̂j }, a new probability space (�,F, P) and random fields vj (t, x)

and v(t, x), defining Y-valued random variables, such that the following assertions hold:

(i) The distribution of vj coincides with µνj
for any j � 1. In particular, a.e. realization of

vj belongs to X .
(ii) The sequence {vj } converges to v in the space Y for a.e. ω ∈ �.

(iii) The random field v defines a stationary random process t �→ v(t, ·) ∈ H 2. Moreover, for
any t ∈ [0, 1] we have

E‖∇v(t)‖2 = B0 (3.10)

E

{
‖�v(t)‖2 +

α1λ

4
‖v(t)‖4

L4

}
� α1B1 + 2λMB0

α1
. (3.11)

(iv) Every realization of v(t, x) belongs to the space

L2(0, 1;H 2) ∩ W 1, 4
3
(
0, 1;L

4
3
)

(3.12)

and satisfies the NLS equation

v̇ − i�v + iλ|v|2v = 0 (3.13)

in the sense that

v(t) = v(0) + i
∫ t

0
(�v − λ|v|2v) ds (3.14)

where 0 � t � 1. Moreover, the functions H0(v(t)) and H1(v(t)) are constant in
t ∈ [0, 1].
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Proof. By assertion (iii) of theorem 3.1, the family of measures µν̂j
is tight inY . Therefore, the

Skorokhod embedding theorem implies the existence of random variables vj and v, possessing
properties (i) and (ii). The fact that v(t) is stationary as a random process valued in H− n

4 −ε

follows from the stationarity of vj (t).
To prove the remaining assertions, we denote by H the Banach space of functions

h ∈ L2(0, 1;H 2) with finite norm

‖h‖H =
(∫ 1

0

∫
D

|�h(t, x)|2 dx dt

) 1
2

+

(∫ 1

0

∫
D

|h(t, x)|4 dx dt

) 1
4

.

It is clear that H is uniformly convex and therefore reflexive (e.g., see problems III.25 and
V.15 in [RS80]). Hence, the space L2(�,H) is also reflexive, and any of its closed bounded
subset is compact in the weak topology (see chapter IV in [RS80]).

Regarding the functions vj (t, x;ω) as elements of the space L2(�,H) we note that, in
view of inequality (2.28) (with B0 and B1 replaced by νB0 and νB1, respectively) and (2.25),
their norms are uniformly bounded. Therefore, the sequence {vj } is relatively compact in the
weak topology, and we can assume (passing to a subsequence if necessary) that it converges
weakly in L2(�,H). The limiting function, which belongs to L2(�,H), must coincide with
v(t, x;ω) as an element of L2(�,L2(0, 1;H 2−ε)). Since the distribution of v(t, ·) does not
depend on t, we conclude from (2.28) that v(t, x) satisfies inequality (3.11) for any t ∈ [0, 1]
and belongs to the space H for a.e. ω. In particular, the distribution of v(t) is concentrated
on H 2.

Since vj (t, x) is a weak solution of (3.1) with ν = νj , then for a.e. ω we have

vj (t) = vj (0) +
∫ t

0
((νj + i)�vj − iλ|vj |2vj ) ds +

√
νj ζj (t) 0 � t � 1 (3.15)

where ζj (t) is a process which distributes as ζ(t). It is easy to check that the sequence
{√νj ζj } ⊂ C(0, 1;L2) goes to zero in probability. Therefore, passing to a subsequence, we
can assume that, for a.e. ω,

√
νj ζj → 0 in C(0, 1;L2) as j → ∞. (3.16)

Let us fix an arbitrary ω ∈ � such that vj → v in Y, v ∈ H, and (3.16) holds. Then we
can pass to the limit in relation (3.15) as j → ∞ regarding its left- and right-hand sides
as elements of C

(
0, 1;H− n

4 −ε
)
. This results in (3.14), which shows that v(t, x) belongs to

the space (3.12) and satisfies equation (3.13) almost surely. Redefining v to be zero on the
corresponding negligible subset of �, we achieve that every realization of v belongs to space
(3.12) and satisfies (3.13).

It remains to show that H0(v(t)) and H1(v(t)) are constant in time and that relation (3.10)
holds. To prove the first assertion, let us fix an arbitrary ω for which v(t, x) belongs to space
(3.12). Then the real-valued functions H0(v(t)) and H1(v(t)) are absolutely continuous, and
their derivatives are given by the formulae

d

dt
H0(v(t)) = Re(v, v̇)

d

dt
H1(v(t)) = Re(−�v + λ|v|2v, v̇)

valid for a.e. t ∈ [0, 1]. Replacing v̇ with the expression found from equation (3.13), we easily
show that the right-hand sides are zero for a.e. t.

Finally, to establish (3.10), we need the following auxiliary assertion (cf proof of
lemma 3.2 in [Kuk03]).
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Lemma 3.3. Let ξj � 0 be a sequence of random variables that converge to ξ almost surely.
Suppose that

E ξ 2
j � C (3.17)

where C > 0 is a constant not depending on j . Then

E ξj → E ξ as j → ∞. (3.18)

Proof. To prove the lemma, it suffices to note that, in view of inequality (3.17), the random
variables ξj are uniformly integrable, and therefore convergence (3.18) holds. �

We now set

ξj =
∫ 1

0
‖∇vj (t, ·)‖2 dt ξ =

∫ 1

0
‖∇v(t, ·)‖2 dt.

By construction, for a.e. ω, we have vj → v in L2(0, 1;H 2−ε) as j → ∞, so the sequence ξj

converges to ξ almost surely. Furthermore, it follows from inequality (2.29) (with B1, P and
M replaced by νB1, νP and νM , respectively) that condition (3.17) is satisfied. Therefore, by
(3.18),

lim
j→∞

E ξj = lim
j→∞

E‖∇vj (t, ·)‖2 = B0 = E ξ =
∫ 1

0
E‖∇v(t, ·)‖2 dt.

The required relation (3.10) follows now from the fact that the function E‖∇v(t, ·)‖2 does not
depend on t.

Clearly, for any integer N > 0 there exists a subsequence {νj } depending on N such that
the assertions of theorem 3.2 hold with the segment [0, 1] replaced by [0, N]. Applying the
diagonal process, we arrive at the following result:

Theorem 3.4. Under the conditions of theorem 3.2, there exists a subsequence {νj } ⊂ {ν̂j }, a
new probability space (�,F, P) and random fields vj (t, x) and v(t, x) defined for t � 0 and
x ∈ D such that the following assertions hold:

(i) The random fields vj are distributed as uνj
.

(ii) For any T > 0, the sequence of random processes {vj (t, ·), 0 � t � T } converges almost
surely to {v(t, ·), 0 � t � T } in the norm of the space L2(0, T ;H 2−ε)∩C

(
0, T ;H− n

4 −ε
)
.

(iii) The random field v(t, x) defines a stationary process in H 2, which satisfies (3.10) and
(3.11).

(iv) Every realization of v(t, x) belongs to L2
loc(R+;H 2) ∩ W

1, 4
3

loc

(
R+;L

4
3
)

and satisfies the
NLS equation (3.13). Moreover, the random functions H0(v(t)) and H1(v(t)) are
t-independent.

Inequalities (3.10) and (3.11) imply the following two-sided estimate for the L2-norm of
the limiting process.

Corollary 3.5. Let v(t, x) be a stationary solution of equation (3.13) constructed in
theorem 3.4. Then for any t � 0 we have

α1B
2
0

α1B1 + 2λMB0
� E‖v(t, ·)‖2 � B0

α1
. (3.19)

Proof. It follows from (3.10) that

E‖v‖2 � α−1
1 E‖∇v‖2 = B0

α1
.
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On the other hand, since ‖∇v‖2 � ‖v‖‖�v‖, we conclude that

(E‖∇v‖2)2 � E‖v‖2
E‖�v‖2.

Combining this with (3.10) and (3.11), we derive the left-hand side inequality in (3.19). �

For the odd-periodic boundary conditions, the assertions of theorem 3.4 and corollary 3.5
hold under assumption (2.4).

3.3. The inviscid limit and the NLS equation

The NLS equation

u̇ − i�u + iλ|u|2u = 0 u(t) ∈ H 1 (3.20)

is a Hamiltonian PDE with the Hamiltonian H1 (see [Kuk00]). Moreover, if n � 2, or n � 3
and the odd-periodic conditions (2.7) are imposed, then for any u0 ∈ H 2 equation (3.20) has
a unique solution u ∈ C(R,H 2) ∩ C1(R,H 1) that is equal to u0 at t = 0. This solution
continuously depends on u0 and H0 and H1 are its integrals of motion; see [BG80, SS99,
Bou99, BGT03]. Accordingly, equation (3.20) defines a continuous dynamical system in H 2

with two integrals of motion.
Let us denote by µ the distribution of v(0, ·). Theorem 3.2 implies the following assertion:

Corollary 3.6. Suppose that either n � 2 or n � 3 and the odd-periodic conditions (2.7)
are imposed. Then any sequence ν̂j → 0 has a subsequence νj → 0 such that the stationary
measures µνj

weakly converge, as j → ∞, to a measure µ which is invariant for the dynamical
system in H 2. This measure satisfies the relations (cf (3.10), (3.11) and (3.19))

α1B
2
0

α1B1 + 2λMB0
�

∫
H 2

‖v‖2µ(dv) � B0

α1∫
H 2

‖∇v‖2µ(dv) = B0

∫
H 2

{
‖�v‖2 +

α1λ

4
‖v‖4

L4

}
µ(dv) � α1B1 + 2λMB0

α1
.

Let us assume that, in (2.3), all coefficients bj are nonzero. In this case theorem 2.6
implies that, for any ν ∈ (0, 1] equation (3.1) has a unique stationary measure µν , and

D(uν(t)) ⇀ µν as t → ∞ (3.21)

where uν(t) is an arbitrary solution of (3.1) defined for t � 0 and satisfying the condition
E‖uν(0)‖2 < ∞. Moreover, if Uν(t), t � 0, is a stationary solution of (3.1), then we have the
weak convergence of measures in the space C(R+,H):

D(uν(T + ·)) ⇀ D(Uν(·)) as T → ∞. (3.22)

To see this, let us note that, if v(t) and vT (t), T � 0, are weak solutions of (3.1) defined for
t � 0 and satisfying the condition

D(vT (0)) ⇀ D(v(0)) as T → ∞ (3.23)

then we have

D(vT (·)) ⇀ D(v(·)) as T → ∞ (3.24)
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where convergences in (3.23) and (3.24) hold in the space of probability measures on H
and C(R+,H), respectively. Applying this result to the weak solutions v(t) = Uν(t) and
vT (t) = uν(T + t) (which satisfies (3.23) in view of (3.21)), we arrive at (3.22).

Theorem 3.4 combined with (3.22) implies the following result:

Theorem 3.7. Suppose that bj �= 0 for all j � 1. Let us fix a vector u0 ∈ H 1 and denote
by uν(t), t � 0, a solution of (3.1) equal to u0 at t = 0. Then, under the assumption of
theorem 3.2, there is a subsequence {νj } such that

lim
j→∞

lim
T →∞

D
(
uνj

(T + ·)) = D(v(·)).
Here the limits are understood in the sense of weak convergence of Borel measures in the space
L2

loc(R+,H) ∩ C
(
R+,H

− n
4 −ε

)
, and v(t) is a stationary solution of the NLS equation (3.13)

such that (3.10) and (3.11) hold, and H0 and H1 are integrals of motion for a.e. realization
of v.
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